全部 标题 作者
关键词 摘要


Thermal Performance Analysis of the Battery Thermal Management Using Phase Change Material

DOI: 10.4236/oalib.1105127, PP. 1-5

Subject Areas: Thermodynamics, Electric Engineering

Keywords: Phase Change Material, Numerical Analysis, Battery Thermal Management, Battery Spacing

Full-Text   Cite this paper   Add to My Lib

Abstract

In this paper, the phase change material passive thermal management system for the lithium ion battery module is established, in which the mock-up battery is used to replace the real battery for the simulation. The temperature rise characteristics of the battery and the melting process of the phase change material in the passive thermal management system are determined through the numerical simulation. The effect of the filling amount of the phase change material on battery thermal performance is also analyzed.

Cite this paper

Song, L. (2018). Thermal Performance Analysis of the Battery Thermal Management Using Phase Change Material. Open Access Library Journal, 5, e5127. doi: http://dx.doi.org/10.4236/oalib.1105127.

References

[1]  Jarrett, A. and Kim, I.Y. (2011) Design Optimization of Electric Vehicle Battery Cooling Plates for Thermal Performance. Journal of Power Sources, 196, 10359-10368.
https://doi.org/10.1016/j.jpowsour.2011.06.090
[2]  Mahamud, R. and Park, C. (2011) Reciprocating Air Flow for Li-Ion Battery Thermal Management to Improve Temperature Uniformity. Journal of Power Sources, 196, 5685-5696.
https://doi.org/10.1016/j.jpowsour.2011.02.076
[3]  Fan, L., Khodadadi, J.M. and Pesaran, A.A. (2013) Parametric Study on Thermal Management of an Air-Cooled Lithium-Ion Battery Module for Plug-in Hybrid Electric Vehicles. Journal of Power Sources, 238, 301-312.
https://doi.org/10.1016/j.jpowsour.2013.03.050
[4]  Chen, D., Jiang, J., Kim, G.H., et al. (2016) Comparison of Different Cooling Methods for Lithium Ion Battery Cells. Applied Thermal Engineering, 94, 846-854.
https://doi.org/10.1016/j.applthermaleng.2015.10.015
[5]  Zhao, C., Cao, W., Dong, T., et al. (2018) Thermal Behavior Study of Discharging/Charging Cylindrical Lithium-Ion Battery Module Cooled by Channeled Liquid Flow. International Journal of Heat and Mass Transfer, 120, 751-762.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.083
[6]  Al-Hallaj, S. and Selman, J.R. (2000) A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material. Journal of Electrochemical Society, 147, 3231-3236.
https://doi.org/10.1149/1.1393888
[7]  Kizilel, R., Sabbah, R., Selman, J.R., et al. (2009) An Alternative Cooling System to Enhance the Safety of Li-Ion Battery Packs. Journal of Power Sources, 194, 1105-1112.
https://doi.org/10.1016/j.jpowsour.2009.06.074
[8]  Maleki, H., Wang, H., Porter, W., et al. (2014) Li-Ion Polymer Cells Thermal Property Changes as a Function of Cycle-Life. Journal of Power Sources, 263, 223-230.
https://doi.org/10.1016/j.jpowsour.2014.04.033
[9]  Sciacovelli, A., Colella, F. and Verda, V. (2013) Melting of PCM in a Thermal Energy Storage Unit: Numerical Investigation and Effect of Nanoparticle Enhancement. International Journal of Energy Research, 37, 1610-1623.
https://doi.org/10.1002/er.2974
[10]  Yang, H., Zhang, H., Sui, Y., et al. (2018) Numerical Analysis and Experimental Visualization of Phase Change Material Melting Process for Thermal Management of Cylindrical Power Battery. Applied Thermal Engineering, 128, 489-499.
https://doi.org/10.1016/j.applthermaleng.2017.09.022
[11]  V?yrynen, A. and Salminen, J. (2012) Lithium Ion Battery Production. Journal of Chemical Thermodynamics, 46, 80-85.
https://doi.org/10.1016/j.jct.2011.09.005
[12]  Ramadass, P., Haran, B., White, R., et al. (2002) Capacity Fade of Sony 18,650 Cells Cycled at Elevated Temperatures: Part II. Capacity Fade Analysis. Journal of Power Sources, 112, 606-613.
https://doi.org/10.1016/S0378-7753(02)00474-3

Full-Text


comments powered by Disqus