全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Inter-comparison Project (ACCMIP)

A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry Mechanisms

Atmospheric Chemistry in Existing Air Atmospheric Dispersion Models and Their Applications: Trends, Advances and Future in Urban Areas in Ontario, Canada and in Other Areas of the World

Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

Preindustrial to present day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

The influence of the vertical distribution of emissions on tropospheric chemistry

The influence of the vertical distribution of emissions on tropospheric chemistry

The chemistry CATT–BRAMS model (CCATT–BRAMS 4.5): a regional atmospheric model system for integrated air quality and weather forecasting and research

A Lagrangian model of air-mass photochemistry and mixing using a trajectory ensemble: the Cambridge Tropospheric Trajectory model of Chemistry And Transport (CiTTyCAT) version 4.2

更多...
Atmosphere  2012 

A Review of Tropospheric Atmospheric Chemistry and Gas-Phase Chemical Mechanisms for Air Quality Modeling

DOI: 10.3390/atmos3010001

Keywords: atmospheric chemistry, troposphere, gas-phase, chemical mechanisms, ozone, nitrogen oxides, volatile organic compounds

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gas-phase chemical mechanisms are vital components of prognostic air quality models. The mechanisms are incorporated into modules that are used to calculate the chemical sources and sinks of ozone and the precursors of particulates. Fifty years ago essential atmospheric chemical processes, such as the importance of the hydroxyl radical, were unknown and crude air quality models incorporated only a few parameterized reactions obtained by fitting observations. Over the years, chemical mechanisms for air quality modeling improved and became more detailed as more experimental data and more powerful computers became available. However it will not be possible to incorporate a detailed treatment of the chemistry for all known chemical constituents because there are thousands of organic compounds emitted into the atmosphere. Some simplified method of treating atmospheric organic chemistry is required to make air quality modeling computationally possible. The majority of the significant differences between air quality mechanisms are due to the differing methods of treating this organic chemistry. The purpose of this review is to present an overview of atmospheric chemistry that is incorporated into air quality mechanisms and to suggest areas in which more research is needed.

References

[1]  Demerjian, K.L.; Kerr, J.A.; Calvert, J.G. The Mechanism of Photochemical Smog Formation. In Advances in Environmental Science and Technology; Wiley: New York, NY, USA, 1974; Volume 4.
[2]  Calvert, J.G.; Stockwell, W.R. Acid generation in the troposphere by gas phase chemistry. Environ. Sci. Technol. 1983, 17, 428–443.
[3]  Finlayson-Pitts, B.J.; Pitts, J.N., Jr. Chemistry of the Upper and Lower Atmosphere; Academic Press: San Diego, CA, USA, 1999.
[4]  Seinfeld, J.H.; Pandis, S. Atmospheric Chemistry and Physics from Air Pollution to Climate Change; John Wiley & Sons: New York, NY, USA, 1998.
[5]  Jenkin, M.E.; Saunders, S.M.; Pilling, M.J. The tropospheric degradation of volatile organic compounds: A protocol for mechanism development. Atmos. Environ. 1997, 31, 81–104, doi:10.1016/S1352-2310(96)00105-7.
[6]  Geiger, H.; Barnes, I.; Becker, K.H.; Bohn, B.; Brauers, T.; Donner, B.; Dorn, H.-P.; Elend, M.; Dinis, C.M.F.; Grossmann, D.; et al. Chemical mechanism development: Laboratory studies and model applications. J. Atmos. Chem. 2002, 42, 323–357, doi:10.1023/A:1015708517705.
[7]  Sander, S.P.; Abbatt, J.; Barker, J.R.; Burkholder, J.B.; Friedl, R.R.; Golden, D.M.; Huie, R.E.; Kolb, C.E.; Kurylo, M.J.; Moortgat, G.K.; et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 16, Supplement to Evaluation 15: Update of Key Reactions; NASA Jet Propulsion Laboratory: Pasadena, CA, USA, 2010.
[8]  International Union of Pure and Applied Chemistry Subcommittee for Gas Kinetic Data Evaluation. Evaluated Kinetic Data. 2008. Available online: http://www.iupac-kinetic.ch.cam.ac.uk/ (accessed on 24 October 2011).
[9]  Fuentes, J.D.; Lerdau, M.; Atkinson, R.; Baldocchi, D.; Botteneheim, J.W.; Ciccioli, P.; Lamb, B.; Geron, C.; Gu, L.; Guenther, A.; et al. Biogenic hydrocarbons in the atmospheric boundary layer: A review. Bull. Amer. Meteor. Soc. 2000, 81, 1537–1575, doi:10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2.
[10]  Simon, H.; Beck, L.; Bhave, P.V.; Divita, F.; Hsu, Y.; Luecken, D.; Mobley, J.D.; Pouliot, G.A.; Reff, A.; Sarwar, G.; et al. The development and uses of EPA’s SPECIATE database. Atmos. Pollut. Res. 2010, 1, 196–206.
[11]  Madronich, S.; Calvert, J.G. The NCAR Master Mechanism of the Gas Phase Chemistry—Version 2.0; NCAR/TN-333+SRT; NCAR: Boulder Colorado, CO, USA, 1990.
[12]  Master Chemical Mechanism, version 3.1, Available online: http://www1.chem.leeds.ac.uk//Atmospheric/MCM/mcmproj.html (accessed on 24 October 2011).
[13]  Szopa, S.; Aumont, B.; Madronich, S. Assessment of the reduction methods used to develop chemical schemes: Building of a new chemical scheme for VOC oxidation suited to three-dimensional multiscale HOx-NOx-VOC chemistry simulations. Atmos. Chem. Phys. 2005, 5, 2519–2538, doi:10.5194/acp-5-2519-2005.
[14]  Crutzen, P.J. My Life with O3, NOx and Other YZOxs; Nobel Lecture; 8 December 1995. Available online: http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1995/crutzen-lecture.html (accessed on 24 October 2011).
[15]  Jenkin, M.E.; Watson, L.A.; Utembe, S.R.; Shallcross, D.E. A common representative intermediates (CRI) mechanism for VOC degradation. Part 1: Gas phase mechanism development. Atmos. Environ. 2008, 42, 7185–7195, doi:10.1016/j.atmosenv.2008.07.028.
[16]  Watsona, L.A.; Shallcrossa, D.E.; Utembea, S.R.; Jenkinb, M.E. A Common Representative Intermediates (CRI) mechanism for VOC degradation. Part 2: Gas phase mechanism reduction. Atmos. Environ. 2008, 42, 7196–7204, doi:10.1016/j.atmosenv.2008.07.034.
[17]  Byun, Q.W.; Ching, J.K.S. Science Algorithms of the EPA Models-3 Community Multiscale Aie Quality (CMAQ) Modeling System; EPA Report EPA-600/R-89-030; U.S. Environmental Protection Agency: Washington, DC, USA, 1999.
[18]  Jacobson, M.Z. Fundamentals of Atmospheric Modeling; Cambridge University Press: Cambridge, UK, 1999.
[19]  Makar, P.A.; Stockwell, W.R.; Li, S.-M. Gas-phase chemistry mechanisms compression strategies: Treatment of reactants. Atmos. Environ. 1996, 30, 831–842, doi:10.1016/1352-2310(95)00357-6.
[20]  Proceedings of the Empirical Kinetics Modeling Approach (EKMA) Validation Workshop; EPA Report EPA-600/9-83-014; Dimitriades, B., Dodge, M., Eds.; Environmental Sciences Research Lab: Research Triangle Park, NC, USA, 1983.
[21]  Stockwell, W.R.; Middleton, P.; Chang, J.S.; Tang, X. The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res. 1990, 95, 16343–16367, doi:10.1029/JD095iD10p16343.
[22]  Whitten, G.Z.; Hogo, H. Mathematical Modeling of Simulated Photochemical Smog; EPA Report EPA-600/3-77-011; Environmental Protection Agency: Washington, DC, USA, 1999.
[23]  Whitten, G.Z.; Hogo, H.; Killus, J.P. The carbon-bond mechanism: A condensed kinetic mechanism for photochemical smog. Environ. Sci. Technol. 1980, 14, 690–700, doi:10.1021/es60166a008.
[24]  Yarwood, G.; Rao, S.; Yocke, M.; Whitten, G. Updates to the Carbon Bond Chemical Mechanism: CB05. Final Report to the US EPA; EPA Report RT-0400675, 2005. Available online: http://www.camx.com/publ/pdfs/CB05_Final_Report_120805.pdf (accessed on 24 October 2011).
[25]  Gery, M.W.; Whitten, G.Z.; Killus, J.P.; Dodge, M.C. A photochemical mechanism for urban and regional scale computer modeling. J. Geophys. Res. 1989, 94, 12925–12956, doi:10.1029/JD094iD10p12925.
[26]  Kim, Y.; Sartelet, K.; Seigneur, C. Formation of secondary aerosols over Europe: Comparison of two gas-phase chemical mechanisms. Atmos. Chem. Phys. 2011, 11, 583–598, doi:10.5194/acp-11-583-2011.
[27]  Stockwell, W.R.; Kirchner, F.; Kuhn, M.; Seefeld, S. A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. 1997, 102, 25847–25879, doi:10.1029/97JD00849.
[28]  Carter, W.P.L. Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5324–5335, doi:10.1016/j.atmosenv.2010.01.026.
[29]  Carter, W.P.L. A detailed mechanism for the gas-phase atmospheric reactions of organic compounds. Atmos. Environ. 1990, 24A, 481–518.
[30]  Carter, W.P.L. Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment. Final Report to California Air Resources Board Contract No. 92-329, and 95-308; California Environmental Protection Agency, Air Resources Board, Research Division: Sacramento, CA, USA, 2000.
[31]  Goliff, W.S.; Stockwell, W.R. The Regional Atmospheric Chemistry Mechanism, Version 2, an Update. In Proceedings of the International Conference on Atmospheric Chemical Mechanisms, University of California, Davis, CA, USA, 8–10 December 2008; University of California: Davis, CA, USA, 2008.
[32]  Middleton, P.; Stockwell, W.R.; Carter, W.P.L. Aggregation and analysis of volatile organic compound emissions for regional modeling. Atmos. Environ. 1990, 24A, 1107–1133.
[33]  Seefeld, S.; Stockwell, W.R. First-order sensitivity analysis of models with time dependent parameters: An application to PAN and ozone. Atmos. Environ. 1999, 33, 2941–2953, doi:10.1016/S1352-2310(99)00092-8.
[34]  Madronich, S. Photodissociation in the atmosphere; 1. actinic flux and the effects on ground reflections and clouds. J. Geophys. Res. 1987, 92, 9740–9752, doi:10.1029/JD092iD08p09740.
[35]  Warneck, P. Chemistry of the Natural Atmosphere, 2nd ed.; Academic Press: San Diego, CA, USA, 1999.
[36]  Calvert, J.G.; Stockwell, W.R. Deviations from the O3-NO-NO2 photostationary state in tropospheric chemistry. Can. J. Chem. 1983, 61, 983–992, doi:10.1139/v83-174.
[37]  Horie, O.; Moortgat, G.K. Decomposition pathways of the excited Criegee intermediates in the ozonolysis of simple alkenes. Atmos. Environ. 1991, 25A, 1881–1896.
[38]  Atkinson, R.; Aschmann, S.M. OH radical production from the gas-phase reactions of O3 with a series of alkenes under atmospheric conditions. Environ. Sci. Technol. 1993, 27, 1357–1363, doi:10.1021/es00044a010.
[39]  Atkinson, R.; Tuazon, E.C.; Aschmann, S.M. Products of the gas-phase reactions of O3 with alkenes. Environ. Sci. Technol. 1995, 29, 1860–1866, doi:10.1021/es00007a025.
[40]  Calvert, J.G.; Atkinson, A.; Becker, K.H.; Kamens, R.M.; Seinfeld, J.H.; Wallington, T.J.; Yarwood, G. The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons; Oxford University Press: Oxford, UK, 2002.
[41]  Bloss, C.; Wagner, V.; Bonzanini, A.; Jenkin, M.E.; Wirtz, K.; Martin-Reviejo, M.; Pilling, M.J. Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environmental chamber data. Atmos. Chem. Phys. 2005, 5, 623–639, doi:10.5194/acp-5-623-2005.
[42]  Berndt, T.; B?ge, O. Formation of phenol and carbonyls from the atmospheric reaction of OH radicals with benzene. Phys. Chem. Chem. Phys. 2006, 8, 1205–1214, doi:10.1039/b514148f.
[43]  Gomez Alvarez, E.G.; Viidanoja, J.; Munoz, A.; Wirtz, K.; Hjorth, J. Experimental confirmation of the dicarbonyl route in the photo-oxidation of toluene and benzene. Environ. Sci. Technol. 2007, 41, 8362–8369, doi:10.1021/es0713274. 18200864
[44]  Atherton, C.; Penner, J. The effects of biogenic hydrocarbons on the transformation of nitrogen oxides in the troposphere. J. Geophys. Res. 1990, 95, doi:10.1029/JD095iD09p14027.
[45]  Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101, doi:10.1016/S1352-2310(99)00460-4.
[46]  Stockwell, W.R.; Calvert, J.G. The mechanism of NO3 and HONO formation in the nighttime chemistry of the urban atmosphere. J. Geophy. Res. 1983, 88, 6673–6682, doi:10.1029/JC088iC11p06673.
[47]  Cantrell, C.A.; Stockwell, W.R.; Anderson, L.G.; Busarow, K.L.; Perner, D.; Schmeltekope, A.; Calvert, J.G.; Johnston, H.S. Kinetic study of the NO3-CH2O reaction and its possible role in nighttime tropospheric chemistry. J. Phys. Chem. 1985, 89, 139–146, doi:10.1021/j100247a031.
[48]  Stockwell, W.R. On the HO2 + HO2 reaction: Its misapplication in atmospheric chemistry models. J. Geophys. Res. 1995, 100, 11695–11698, doi:10.1029/94JD03107.
[49]  Villenave, E.; Lesclaux, R.; Seefeld, S.; Stockwell, W.R. Kinetics and atmospheric implications of peroxy radical cross reactions involving CH3C(O)O2 radical. J. Geophys. Res. 1998, 103, 25273–25285, doi:10.1029/98JD00926.
[50]  Kirchner, F.; Stockwell, W.R. Effect of peroxy radical reactions on the predicted concentrations of ozone, nitrogenous compounds and radicals. J. Geophys. Res. 1996, 101, 21007–21022, doi:10.1029/96JD01519.
[51]  Stockwell, W.R.; Calvert, J.G. The mechanism of the HO-SO2 reaction. Atmos. Environ. 1983, 17, 2231–2235, doi:10.1016/0004-6981(83)90220-2.
[52]  Lu, R.; Turco, R.P.; Jacobson, M.Z. An integrated air pollution modeling system for urban and regional scales: 2. Simulations for SCACS 1987. J. Geophys. Res. 1997, 102, 6081–6098, doi:10.1029/96JD03502.
[53]  Henderson, B.H.; Pinder, R.W.; Crooks, J.; Cohen, R.C.; Wennberg, P.O.; Hutzell, W.T.; Sarwar, G.; Goliff, W.S.; Stockwell, W.R.; Fahr, A.; et al. Evaluation of simulated photochemical partitioning of oxidized nitrogen in the upper troposphere. Atmos. Chem. Phys. 2011, 11, 275–291, doi:10.5194/acp-11-275-2011.
[54]  Crowley, J.N.; Schuster, G.; Pouvesle, N.; Bonn, B.; Bingemer, H.; Parchatka, U.; Fischer, H.; Lelieveld, J. Nocturnal nitrogen oxides at a rural mountain-site in Southwestern Germany. Atmos. Chem. Phys. 2010, 10, 2795–2812, doi:10.5194/acp-10-2795-2010.
[55]  Emmerson, K.M.; Evans, M.J. Comparison of tropospheric gas-phase chemistry schemes for use within global models. Atmos. Chem. Phys. 2009, 9, 1831–1845, doi:10.5194/acp-9-1831-2009.
[56]  Galloway, M.M.; Huisman, A.J.; Yee, L.D.; Chan, A.W.H.; Loza, C.L.; Seinfeld, J.H.; Keutsch, F.N. Yields of oxidized volatile organic compounds during the OH radical initiated oxidation of isoprene, methyl vinyl ketone, and methacrolein under high-NOx condition. Atmos. Chem. Phys. 2011, 11, 10779–10790, doi:10.5194/acp-11-10779-2011.
[57]  Chen, S.; Ren, X.; Mao, J.; Chen, Z.; Brune, W.H.; Lefer, B.; Rappenglück, B.; Flynn, J.; Olson, J.; Crawford, J.H. A comparison of chemical mechanisms based on TRAMP-2006 field data. Atmos. Environ. 2010, 44, 4116–4125, doi:10.1016/j.atmosenv.2009.05.027.

Full-Text

comments powered by Disqus