全部 标题 作者
关键词 摘要


Cyclotrons as Drivers for Precision Neutrino Measurements

DOI: 10.1155/2014/347097

Full-Text   Cite this paper   Add to My Lib

Abstract:

As we enter the age of precision measurement in neutrino physics, improved flux sources are required. These must have a well defined flavor content with energies in ranges where backgrounds are low and cross-section knowledge is high. Very few sources of neutrinos can meet these requirements. However, pion/muon and isotope decay-at-rest sources qualify. The ideal drivers for decay-at-rest sources are cyclotron accelerators, which are compact and relatively inexpensive. This paper describes a scheme to produce decay-at-rest sources driven by such cyclotrons, developed within the DAE ALUS program. Examples of the value of the high precision beams for pursuing Beyond Standard Model interactions are reviewed. New results on a combined DAE ALUS—Hyper-K search for CP violation that achieve errors on the mixing matrix parameter of 4° to 12° are presented. 1. Introduction As we reach the 100th anniversary of the birth of Bruno Pontecorvo, neutrino physics is facing a transition. Neutrino oscillations are well established, albeit in a different form from what Pontecorvo expected [1, 2]. We have a data-driven “Neutrino Standard Model,” ( SM) which, despite questions about its underlying theoretical description, is remarkably predictive. Now, the neutrino community must pivot from “searches” to “precision measurements,” in which we can test the SM. The transition requires new and better tools for these measurements and further calls for original approaches to experiments. The SM is simply described in Figure 1. The three known neutrino flavors mix within three mass states. The separations between the states, or “mass splittings,” are defined as , for The historical name for the smaller splitting ( ) is and the larger mass splitting ( is referred to as , in honor of the solar and atmospheric experiments that established the existence of each. The early solar [3–6] and atmospheric [7–9] experiments have been joined by new results [10–15] to establish this phenomenology [16]. Figure 1: Illustration of the “ SM” showing mass states and mixings. Note that this drawing depicts only one possible mass ordering. There remain many open questions that surround this data-driven picture of neutrinos and oscillations. The mixings are described with a matrix, commonly called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, that connects the mass eigenstates ( , , and ) to the flavor eigenstates ( , , and ): where the ranges indicate our knowledge of each of the entries [27]. Together with the mass splittings, the mixing matrix is pictorially represented in Figure 1, in which

References

[1]  B. Pontecorvo, “Mesonium and anti-mesonium,” Soviet Physics-JETP, vol. 6, p. 429, 1957.
[2]  B. Pontecorvo, “Electron and Muon neutrinos,” Soviet Physics-JETP, vol. 10, pp. 1236–1240, 1960.
[3]  R. Davis Jr., D. S. Harmer, and K. C. Hoffman, “Search for neutrinos from the sun,” Physical Review Letters, vol. 20, no. 21, pp. 1205–1209, 1968.
[4]  J. N. Abdurashitov, V. N. Gavrin, S. V. Girin, et al., “Measurement of the solar neutrino capture rate with gallium metal,” Physical Review C, vol. 60, no. 5, Article ID 055801, 32 pages, 1999.
[5]  W. Hampel, J. Handt, G. Heusser et al., “GALLEX solar neutrino observations: results for GALLEX IV,” Physics Letters B, vol. 447, no. 1-2, pp. 127–133, 1999.
[6]  K. Hirata, K. Inoue, T. Kajita, et al., “Results from one thousand days of real-time, directional solar-neutrino data,” Physical Review Letters, vol. 65, no. 11, pp. 1297–1300, 1990.
[7]  K. Hirata, T. Kajita, M. Koshiba, et al., “Experimental study of the atmospheric neutrino flux,” Physics Letters B, vol. 205, no. 2-3, pp. 416–420, 1988.
[8]  D. Casper, R. Becker-Szendy, C. B. Bratton et al., “Measurement of atmospheric neutrino composition with the IMB-3 detector,” Physical Review Letters, vol. 66, no. 20, pp. 2561–2564, 1991.
[9]  W. Allison, G. Alner, D. Ayres, et al., “The atmospheric neutrino flavor ratio from a 3.9 fiducial kiloton-year exposure of Soudan 2,” Physics Letters B, vol. 449, no. 1-2, pp. 137–144, 1999.
[10]  S. Fukuda, Y. Fukuda, M. Ishitsuka, et al., “Solar 8B and hep neutrino measurements from 1258 days of Super-Kamiokande data,” Physical Review Letters, vol. 86, no. 25, pp. 5651–5655, 2001.
[11]  Q. Ahmad, R. C. Allen, T. C. Anderson, et al., “Measurement of the rate of -interactions produced by 8B solar neutrinos at the sudbury neutrino observatory,” Physical Review Letters, vol. 87, no. 7, Article ID 071301, 6 pages, 2001.
[12]  T. Araki, K. Eguchi, S. Enomoto, et al., “Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion,” Physical Review Letters, vol. 94, no. 8, Article ID 081801, 5 pages, 2005.
[13]  M. Ahn, E. Aliu, S. Andringa, et al., “Measurement of neutrino oscillation by the K2K experiment,” Physical Review D, vol. 74, no. 7, Article ID 072003, 39 pages, 2006.
[14]  D. Michael, P. Adamson, and T. Alexopoulos, “Observation of Muon neutrino disappearance with the MINOS detectors in the NuMI neutrino beam,” Physical Review Letters, vol. 97, no. 19, Article ID 191801, 6 pages, 2006.
[15]  K. Abe, N. Abgrall, Y. Ajima, et al., “First muon-neutrino disappearance study with an off-axis beam,” Physical Review D, vol. 85, no. 3, Article ID 031103, 2012.
[16]  J. Beringer, J. Arguin, R. Barnett, et al., “Review of particle physics,” Physical Review D, vol. 86, no. 1, Article ID 010001, 1528 pages, 2012.
[17]  A. Anderson, J. M. Conrad, E. Figueroa-Feliciano, et al., “Measuring active-to-sterile neutrino oscillations with neutral current coherent neutrino-nucleus scattering,” Physical Review D, vol. 86, no. 1, Article ID 013004, 11 pages, 2012.
[18]  A. Adelmann, J. R. Alonso, and W. Barletta, “Cost-effective design options for IsoDAR,” 2012, http://arxiv.org/abs/1210.4454.
[19]  J. Conrad and M. Shaevitz, “Limits on electron neutrino disappearance from the KARMEN and LSND ve-carbon cross section data,” Physical Review D, vol. 85, no. 1, Article ID 013017, 6 pages, 2012.
[20]  G. Mention, M. Fechner, Th. Lasserre, et al., “Reactor antineutrino anomaly,” Physical Review D, vol. 83, no. 7, Article ID 073006, 20 pages, 2011.
[21]  M. Cribier, M. Fechner, T. Lasserre, et al., “Proposed search for a fourth neutrino with a PBq antineutrino source,” Physical Review Letters, vol. 107, no. 20, Article ID 201801, 4 pages, 2011.
[22]  J. Barrett and J. A. Formaggio, “Resolving the reactor neutrino anomaly with the KATRIN neutrino experiment,” 2011, http://arxiv.org/abs/1105.1326.
[23]  A. Bungau, A. Adelmann, and J. R. Alonso, “Proposal for an electron antineutrino disappearance search using high-rate 8Li production and decay,” Physical Review Letters, vol. 109, no. 14, Article ID 141802, 5 pages, 2012.
[24]  D. V. Forero and M. M. Guzzo, “Constraining nonstandard neutrino interactions with electrons,” Physical Review D, vol. 84, no. 1, Article ID 013002, 2011.
[25]  J. Appel, M. Bass, M. Bishai, et al., “Physics Working group report to the LBNE Reconfiguration Steering Committee,” 2012.
[26]  K. Abe, T. Abe, H. Aihara, et al., “Letter of intent: the Hyper-Kamiokande experiment -detector design and physics potential,” 2011, http://arxiv.org/abs/1109.3262.
[27]  M. Gonzalez-Garcia, M. Maltoni, J. Salvado, and T. Schwetz, “Global fit to three neutrino mixing: critical look at present precision,” Journal of High Energy Physics, vol. 2012, p. 123, 2012.
[28]  Y. Abe, C. Aberle, J. dos Anjos, et al., “Reactor e disappearance in the Double Chooz experiment,” Physical Review D, vol. 86, no. 5, Article ID 052008, 21 pages, 2012.
[29]  F. An, Q. An, J. Z. Bai, et al., “Improved measurement of electron antineutrino disappearance at Daya Bay,” Chinese Physics C, vol. 37, no. 1, Article ID 011001, 2013.
[30]  J. Ahn, S. Chebotaryov, J. H. Choi, et al., “Observation of reactor electron antineutrinos disappearance in the RENO experiment,” Physical Review Letters, vol. 108, no. 19, Article ID 191802, 6 pages, 2012.
[31]  K. Abe, N. Abgrall, Y. Ajima, et al., “Indication of electron neutrino appearance from an accelerator-produced off-axis Muon neutrino beam,” Physical Review Letters, vol. 107, no. 4, Article ID 041801, 8 pages, 2011.
[32]  L. Montanet, K. Gieselmann, R. M. Barnett, et al., “Review of particle properties,” Physical Review D, vol. 50, no. 3, pp. 1173–1814, 1995.
[33]  T. Bezerra, H. Furuta, F. Suekane, and T. Matsubara, “A global fit determination of effective from baseline dependence of reactor e disappearance,” Physics Letters B, vol. 725, pp. 4271–5276, 2013.
[34]  M. Gonzalez-Garcia, M. Maltoni, J. Salvado, and T. Schwetz, “Global fit to three neutrino mixing: critical look at present precision,” Journal of High Energy Physics, vol. 2012, p. 123, 2012.
[35]  J. Lesgourgues and S. Pastor, “Neutrino mass from cosmology,” Advances in High Energy Physics, vol. 2012, Article ID 608515, 34 pages, 2012.
[36]  G. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, and A. Rotunno, “Global analysis of neutrino masses, mixings, and phases: entering the era of leptonic CP violation searches,” Physical Review D, vol. 86, no. 1, Article ID 013012, 10 pages, 2012.
[37]  T. Ohlsson, “Status of non-standard neutrino interactions,” Reports on Progress in Physics, vol. 76, no. 4, Article ID 044201, 2013.
[38]  J. Conrad, C. Ignarra, G. Karagiorgi, M. Shaevitz, and J. Spitz, “Sterile neutrino fits to short-baseline neutrino oscillation measurements,” Advances in High Energy Physics, vol. 2013, Article ID 163897, 26 pages, 2013.
[39]  A. A. Aguilar-Arevalo, C. E. Anderson, A. O. Bazarko, et al., “Neutrino flux prediction at MiniBooNE,” Physical Review D, vol. 79, no. 7, Article ID 072002, 38 pages, 2009.
[40]  K. Abe, N. Abgrall, H. Aihara, et al., “T2K neutrino flux prediction,” Physical Review D, vol. 87, no. 1, Article ID 012001, 34 pages, 2013.
[41]  S. Kopp, “The NuMI neutrino beam at Fermilab,” 2005, http://arxiv.org/abs/physics/0508001.
[42]  G. Giacomelli, “The CNGS neutrino beam,” Journal of Physics, vol. 116, no. 1, Article ID 012004, 2008.
[43]  J. Formaggio and G. Zeller, “From eV to EeV: neutrino cross sections across energy scales,” Reviews of Modern Physics, vol. 84, no. 3, pp. 1307–1341, 2012.
[44]  M. Bishai, M. Diwan, S. Kettell, et al., “Precision neutrino oscillation measurements using simultaneous high-power, low-energy project-X beams,” 2013, http://arxiv.org/abs/1307.0807.
[45]  M. Gonzalez-Garcia, M. Maltoni, J. Salvado, and T. Schwetz, “Global fit to three neutrino mixing: critical look at present precision,” Journal of High Energy Physics, vol. 2012, p. 123, 2012.
[46]  C. Bemporad, G. Gratta, and P. Vogel, “Reactor-based neutrino oscillation experiments,” Reviews of Modern Physics, vol. 74, no. 2, pp. 297–328, 2002.
[47]  A. de Gouvea and J. Jenkins, “What can we learn from neutrino electron scattering?” Physical Review D, vol. 74, no. 3, Article ID 033004, 12 pages, 2006.
[48]  R. L. Burman, M. E. Potter, and E. S. Smith, “Monte Carlo simulation of neutrino production by medium-energy protons in a beam stop,” Nuclear Instruments and Methods in Physics A, vol. 291, no. 3, pp. 621–633, 1990.
[49]  J. M. Conrad and M. H. Shaevitz, “Multiple cyclotron method to search for CP violation in the neutrino sector,” Physical Review Letters, vol. 104, no. 14, Article ID 141802, 2010.
[50]  B. Pontecorvo, “Report P.D.-205 of the National Research Council of Canada Division of Atomic Energy (1946),” declassified and issued by the Atomic Energy Commission in 1949.
[51]  B. Pontecorvo, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Cambridge University Press, Cambridge, UK, 1991.
[52]  C. L. Cowan Jr., F. Reines, F. B. Harrison, H. W. Kruse, and A. D. McGuire, “Detection of the free neutrino: a confirmation,” Science, vol. 124, no. 3212, pp. 103–104, 1956.
[53]  L. H. Thomas, “The paths of ions in the cyclotron I. Orbits in the magnetic field,” Physical Review, vol. 54, no. 8, pp. 580–588, 1938.
[54]  M. Seidel, Ch. Baumgarten, M. Bopp, et al., “Towards the 2?MW Cyclotron and latest development at PSI,” in Proceedings of the 19th International Conference on Cyclotrons and their Applications, 2010.
[55]  M. Kase, E. Ikezawa, N. Fukunishi, et al., “Present status of the riken ring cyclotron,” in Proceedings of the 17th International Conference on Cyclotrons and their Applications, 2004.
[56]  C. J. Oram, J. B. Warren, G. M. Marshall, and J. Doornbos, “Commissioning of a new low energy π-μ at triumf,” Nuclear Instruments and Methods, vol. 179, no. 1, pp. 95–103, 1981.
[57]  J. Blaser, H. Willax, and H. Gerber, “The sin ring cyclotron project status report,” in Conference Proceedings C, pp. 556–565, 1969.
[58]  R. L. Burman, R. L. Fulton, and M. Jakobson, “Design of the LAMPF Low-Energy Pion Channel,” Nuclear Instruments and Methods, vol. 131, no. 1, pp. 29–38, 1975.
[59]  V. Tishchenko, S. Battu, R. M. Carey, et al., “Detailed report of the MuLan measurement of the positive Muon lifetime and determination of the Fermi constant,” 2012, http://arxiv.org/abs/1211.0960.
[60]  R. Allen, H. Chen, P. Doe, et al., “Study of electron-neutrino-electron elastic scattering at LAMPF,” Physical Review D, vol. 47, no. 1, pp. 11–28, 1993.
[61]  C. Athanassopoulos, L. B. Auerbach, R. L. Burman et al., “Evidence for oscillations from the LSND experiment at the los alamos meson physics facility,” Physical Review Letters, vol. 77, no. 15, pp. 3082–3085, 1996.
[62]  B. Armbruster, I. M. Blair, B. A. Bodmann, et al., “Upper limits for neutrino oscillations from muon decay at rest,” Physical Review D, vol. 65, no. 11, Article ID 112001, 16 pages, 2002.
[63]  A. Bolozdynya, F. Cavanna, Y. Efremenko, et al., “Opportunities for neutrino physics at the spallation neutron source: a white paper,” 2012, http://arxiv.org/abs/1211.5199.
[64]  L. Calabretta, “Utilization and reliability of high power proton accelerators,” in Proceedings of the Nuclear Energy Agency (NEA Workshop), 1999.
[65]  C. Rubbia, J. A. Rubio, S. Buono, et al., “Conceptual design of a fast neutron operated high power energy amplifier,” Tech. Rep. CERN/AT/95-44(ET), 1995.
[66]  M. Reiser, Theory and Design of Charged Particle Beams, Wiley-VCH, New York, NY, USA, 2008.
[67]  A. Adelmann, A. Gsell, C. Kraus, et al., “The OPAL framework (object oriented parallel accelerator library) version 1.2.01,” User’s Reference Manual PSI-PR-08-02, Paul Scherrer Institut, Villigen, Switzerland, 2008–2013, http://amas.web.psi.ch/docs/opal/opal_user_guide.pdf.
[68]  J. J. Yang, A. Adelmann, M. Humbel, M. Seidel, and T. J. Zhang, “Beam dynamics in high intensity cyclotrons including neighboring bunch effects: model, implementation, and application,” Physical Review Special Topics, vol. 13, no. 6, Article ID 064201, 2010.
[69]  Y. J. Bi, A. Adelmann, R. D?lling et al., “Towards quantitative simulations of high power proton cyclotrons,” Physical Review Special Topics, vol. 14, no. 5, Article ID 054402, 2011.
[70]  F. Maimone, L. Celona, and F. Chines, “Status of the versatile ion source VIS,” in Proceedings of the EPAC08-MOPC151 Conference, vol. C0806233, 2008.
[71]  J. Alonso, “Relevance of IsoDAR and DAEdALUS to medical radioisotope production,” 2012, http://arxiv.org/abs/arXiv:1209.4925.
[72]  Cyclone-70, “Multiparticule high energy industrial cyclotron,” Tech. Rep., 2009, http://www.iba-cyclotron-solutions.com/products-cyclo/cyclone-70.
[73]  MYRRHA, http://www.euronuclear.org/e-news/e-news-21/myrrha.htm.
[74]  S. K. Agarwalla and P. Huber, “Potential measurement of the weak mixing angle with neutrino-electron scattering at low energy,” Journal of High Energy Physics, vol. 2011, p. 59, 2011.
[75]  S. Agarwalla, J. Conrad, and M. Shaevitz, “Short-baseline neutrino oscillation waves in ultra-large liquid scintillator detectors,” Journal of High Energy Physics, vol. 2011, p. 85, 2011.
[76]  D. Haxton and W. McCurdy, private email communication.
[77]  A. Sen, “Production of Low Vibrational State Ions for Recombination Experiments,” [Ph.D. thesis], University of Western Ontario, Ontario, Canada, 1985.
[78]  A. A. Aguilar-Arevalo, B. C. Brown, L. Bugel, et al., “Improved search for oscillations in the MiniBooNE experiment,” Physical Review Letters, vol. 110, no. 16, Article ID 161801, 6 pages, 2013.
[79]  T. A. Mueller, D. Lhuillier, M. Fallot, et al., “Improved predictions of reactor antineutrino spectra,” Physical Review C, vol. 83, no. 5, Article ID 054615, 17 pages, 2011.
[80]  P. Astier, D. Autiero, A. Baldisseri, et al., “Search for oscillations in the NOMAD experiment,” Physics Letters B, vol. 570, no. 1-2, pp. 19–31, 2003.
[81]  I. E. Stockdale, A. Bodek, F. Borcherding et al., “Search for muon neutrino and antineutrino oscillations in the mass range 15<Δm2<1,000 eV2/c4,” Zeitschrift für Physik C Particles and Fields, vol. 27, no. 1, pp. 53–56, 1985.
[82]  F. Dydak, G. J. Feldman, C. Guyot et al., “A search for νμ oscillations in the Δm2 range 0.3–90?eV2,” Physics Letters B, vol. 134, no. 3-4, pp. 281–286, 1984.
[83]  M. Sorel, J. M. Conrad, and M. H. Shaevitz, “Combined analysis of short-baseline neutrino experiments in the (3 + 1) and (3 + 2) sterile neutrino oscillation hypotheses,” Physical Review D, vol. 70, no. 7, pp. 1–73004, 2004.
[84]  A. Bungau, R. Barlow, M. Shaevitz, J. Conrad, and J. Spitz, “Target studies for the production of lithium8 for neutrino physics using a low energy cyclotron,” 2012, http://arxiv.org/abs/1205.5790.
[85]  P. Vogel and J. F. Beacom, “Angular distribution of neutron inverse beta decay, + ,” Physical Review D, vol. 60, no. 5, Article ID 053003, 1999.
[86]  A. Gando, Y. Gando, K. Ichimura, et al., “Constraints on θ13 from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND,” Physical Review D, vol. 83, no. 5, Article ID 052002, 11 pages, 2011.
[87]  S. Abe, T. Ebihara, S. Enomoto et al., “Precision measurement of neutrino oscillation parameters with KamLAND,” Physical Review Letters, vol. 100, no. 22, Article ID 221803, 2008.
[88]  A. Gando, Y. Gando, H. Hanakago, et al., “Reactor on-off antineutrino measurement with KamLAND,” 2013, http://arxiv.org/abs/1303.4667.
[89]  S. Abe, K. Furuno, A. Gando, et al., “Measurement of the 8B solar neutrino flux with the KamLAND liquid scintillator detector,” Physical Review C, vol. 84, no. 3, Article ID 035804, 2011.
[90]  F. Reines, H. S. Gurr, and H. W. Sobel, “Detection of e-e scattering,” Physical Review Letters, vol. 37, no. 6, pp. 315–318, 1976.
[91]  M. Deniz, S. Bilmis, and H. T. Wong, “Final results of scattering cross-section measurements and constraints on new physics,” Journal of Physics, vol. 375, Article ID 042044, 2012.
[92]  A. Gomonaǐ and I. Zapesochnyǐ, “Resonance excitation of bound and autoionization states of the ytterbium atom in the course of three-photon ionization,” JETP Letters, vol. 57, no. 12, pp. 765–768, 1993.
[93]  Z. Daraktchieva, C. Amsler, M. Avenier et al., “Final results on the neutrino magnetic moment from the MUNU experiment,” Physics Letters B, vol. 615, no. 3-4, pp. 153–159, 2005.
[94]  J. Conrad, M. Shaevitz, I. Shimizu, J. Spitz, M. Toups, and L. Winslow, “Precision e-electron scattering measurements with IsoDAR to search for new physics”.
[95]  M. Baak, M. Goebel, A. Hoecker, et al., “The electroweak fit of the standard model after the discovery of a new boson at the LHC,” European Physical Journal C, vol. 72, p. 2205, 2012.
[96]  G. P. Zeller, K. S. McFarland, T. Adams et al., “Precise determination of electroweak parameters in neutrino-nucleon scattering,” Physical Review Letters, vol. 88, no. 9, Article ID 091802, 2002.
[97]  J. Conrad, J. Link, and M. Shaevitz, “Precision measurement of sin 2 at a reactor,” Physical Review D, vol. 71, no. 7, Article ID 073013, 17 pages, 2005.
[98]  S. Abe, K. Furuno, A. Gando, et al., “Measurement of the 8B solar neutrino flux with the KamLAND liquid scintillator detector,” Physical Review C, vol. 84, no. 3, Article ID 035804, 2011.
[99]  H. Murayama and T. Yanagida, “Leptogenesis in supersymmetric standard model with right-handed neutrino,” Physics Letters B, vol. 322, no. 4, pp. 349–354, 1994.
[100]  E. Ma and U. Sarkar, “Neutrino masses and leptogenesis with heavy Higgs triplets,” Physical Review Letters, vol. 80, no. 26, pp. 5716–5719, 1998.
[101]  S. Davidson and A. Ibarra, “A lower bound on the right-handed neutrino mass from leptogenesis,” Physics Letters B, vol. 535, no. 1–4, pp. 25–32, 2002.
[102]  H. Nunokawa, S. Parke, and J. Valle, “CP violation and neutrino oscillations,” Progress in Particle and Nuclear Physics, vol. 60, no. 2, pp. 338–402, 2008.
[103]  R. Patterson, “The NOvA experiment: status and outlook,” Nuclear Physics B, vol. 235-236, pp. 151–157, 2013.
[104]  M. Aartsen, R. Abbasi, M. Ackermann, et al., “PINGU sensitivity to the neutrino mass hierarchy,” 2013, http://arxiv.org/abs/1306.5846.
[105]  The DAEdALUS Collaboration, “A study of detector configurations for the DUSEL CP violation searches combining LBNE and DAEdALUS,” 2010, http://arxiv.org/abs/1008.4967.
[106]  M. Wurm, J. F. Beacom, L. B. Bezrukov, et al., “The next-generation liquid-scintillator neutrino observatory LENA,” Astroparticle Physics, vol. 35, no. 11, pp. 685–732, 2012.
[107]  T. Akiri, D. Allspach, and M. Andrews, “The 2010 interim report of the long-baseline neutrino experiment collaboration physics working groups,” 2011, http://arxiv.org/abs/1110.6249.
[108]  A. J. Anderson, J. M. Conrad, E. Figueroa-Feliciano, K. Scholberg, and J. Spitz, “Coherent neutrino scattering in dark matter detectors,” Physical Review D, vol. 84, no. 1, Article ID 013008, 2011.

Full-Text

comments powered by Disqus