全部 标题 作者
关键词 摘要


玻璃化转变的序参量和自旋分量数为零的瞬时自旋体系
The Order Parameter of Glass Transition and Instantaneous Spin Systems with De Gennes n = 0

DOI: 10.12677/CMP.2013.22006, PP. 27-41

Keywords: 玻璃化转变理论;自旋分量数为零;孤立波;反串级–串级模式
Glass Transition Theory
, De Gennes n = 0, Solitary Wave, Inverse Cascade/Cascade Mode

Full-Text   Cite this paper   Add to My Lib

Abstract:

在大分子的自避无规行走中,链粒子的每一步行走都伴有自旋分量数为零的瞬时自旋体系,它提供粒子合作移动所需的额外能量、体积和松弛时间。利用这些附加的瞬时自旋体系,不仅直接导出了玻璃化转变和大分子熔体蛇行模型中共同的布朗运动模式,证明了缠结分子量的长度对应与流体力学中的雷诺数;而且还证明了缠结链的本征扩散离域模式,从冻结的玻璃态到熔融液态,都是横向似涟漪波的链尺度定向孤立波。它就是玻璃化转变的序参量。分量数为零的瞬时自旋体系的存在,不仅可统一现有的各种玻璃化转变理论,而且也为湍流的物理起源找到了新的理论。玻璃化转变作为一个范例,它是分子集团从无序到更无序直到湍流的所有“无规离域转变”中的第一层转变。
In macromolecular self-avoiding random walk, movement of each particle accompanies an instantaneous spin system with De Gennes n = 0 that provides extra energy, vacancy volume and relaxation time needed for particles co-movement. Using these additional spin systems not only directly yields the same Brownian motion mode in glass transition (GT) and reptation, but also proves that the entangled chain length corresponds to the Reynolds number in hydrodynamics and the diffusion mode of entangled chains, from frozen glass state to melt liquid state, is nanoscale size direction solitary wave with transverse ripplon-like softwave, that is the order parameter of GT. GT serves as an inspiration and continues to serve as the paradigm in the random delocalization transitions from disorder to more disorder until turbulence.

References

[1]  M. Rubinstein, R. H. Colby. Polymer physics. Oxford: Oxford Univer-sity Press, 2003.
[2]  M. Doi, S. F. Edwards. The theory of polymer dynamics. Oxford: Oxford University Press, 1988.
[3]  S. F. Edwards. The statistical mechanics of polymerized material. Proceedings of the Physical Society (London), 1967, 92(1): 9-16.
[4]  P. G. de Gennes. Reptation of a polymer chain in a presence of fixed obstacles. Journal of Chemical Physics, 1971, 55: 572-579.
[5]  S. T. Milner, T. C. B. McLeish. Reptation and contour-length fluctuations in melts of linear polymers. Physical Review Letters, 1998, 81(3): 725-728.
[6]  A. E. Likhtman, T. C. B. McLeish. Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules, 2002, 35(16): 6332-6343.
[7]  I. Teraoka. Polymer solutions: An introduction to physical properties. New York: Wiley-Interscience, 2002.
[8]  P. G. de Gennes. A simple picture for structural glasses. Comptes Rendus Phy-sique, 2003, 3(9): 1263-1268.
[9]  J. L. Wu. Universal 2D soft nano-scale mosaic structure theory for polymers and colloids. Soft Nanoscience Letters, 2011, 1(3): 86-95.
[10]  J. L. Wu. Soft matrix and fixed point of Lennard-Jones potentials for different hard clusters in size at glass transition. AIP Advances, 2012, 2: 1-14.
[11]  P. Charbon-neau, A. Ikeda, G. Parisi and F. Zamponi. Dimen- sional study of the caging order parameter at the glass transition. Proceedings of the Na-tional Academy of Sciences, 2012, 109: 13939-13943.
[12]  R. A. Ba?os, et al. Thermodynamic glass transition in a spin glass without time-reversal symmetry. Proceedings of the National Academy of Sciences, 2012, 109(17): 6452-6454.
[13]  P. W. Anderson. Is com-plexity physics? Is it science? What is it? Physics Today, 1991, 44(1): 9.
[14]  G. Parisi, F. Zamponi. Mean-field theory of hard sphere glasses and jamming. Reviews of Modern Physics, 2010, 82: 789-845.
[15]  D. Wang, Y. H. Liu, T. Nishi and K. Nakajima. New insights on strain energies in hexagonal systems. Applied Physics Let-ters, 2012, 100(25): Article ID: 251902.
[16]  V. Dotsenko. Introduc-tion to the replica theory of disordered statistical systems (Collection Alea-Saclay). Cambridge: Cambridge University Press, 2001.
[17]  Y. Zhou, M. Karplus, K. D. Ball and R. S. Berry. The distance fluctuation criterion for melting: Comparison of square-well and Morse potential models for clusters and homopolymers. Journal of Chemical Physics, 2002, 116(5): 2323-2329.
[18]  P. G. 德热纳, 吴大成译. 高分子物理学中的标度概念[M]. 北京: 化学工业出版社, 2002.
[19]  J. L. Wu. The common physical origin of the glass transition, macromolecular entanglement and turbulence. Natural Science, 2011, 3(7): 580-593.
[20]  J. L. Wu. Unified model theory of the glass transition: (Part 4) Theoretical proof of the standard WLF equation in the glass transition. Journal of Materials Science and Engineering, 2009, 3: 76-82.
[21]  R. 泽仑著, 黄畇等译. 非晶态固体物理学[M]. 北京: 北京大学出版社, 1998.
[22]  A. Thomas. P. G. de Gennes’ impact on sci-ence-Volume II. Soft matter and biophysics, 2009. http://www.worldscibooks.com/physics/7395.html
[23]  P. G. de Gennes. Viewpoint on polymer glasses. Journal of Polymer Science: Part B: Polymer Physics, 2005, 43(23): 3365-3366.
[24]  S. Pahl, G. Fleischer, F. Fujara and B. Geil. Anomalous segment diffusion in polydimethylsiloxane melts. Macromolecules, 1997, 30(5): 1414-1418.
[25]  S. M. Bhattacharyya, B. Bagchi and P. G. Wolynes. Subquadratic wavenumber dependence of the structural relaxation of super- cooled liquid in the crossover regime. Journal of Chemical Phy- sics, 2010, 132: Article ID: 104503.
[26]  V. Lubchenko, P. G. Wolynes, Intrinsic quantum excitations of low temperature glasses. Physical Review Letters, 2001, 87: Article ID: 195901.
[27]  赵得禄, 范庆荣, 钱人元, 徐端夫. 聚丙烯熔体的零切粘度与粘均分子量的关系[J]. 高分子通讯, 1981, 5: 385-388.
[28]  M. J. Schroeder, C. M. Roland. Normal mode relaxation of polyisoprene in blends with vinyl polybu-tadienes. Macromolecules, 1999, 32: 2000-2003.
[29]  C. A. Bero, C. M. Roland. Terminal relaxations in linear and three-arm star polyiso-prenes. Macromolecules, 1996, 29(5): 1562-1568.
[30]  G. L. Edward, C. W. David. Transitions in trans-1,4-polyiso- prene. Journal of Polymer Science Part B, 1969, 7(10): 1639- 1649.
[31]  U. Frisch. Turbulence. Cambridge: Cambridge University Press, 1995.
[32]  W. B. Wright, R. Budakian, D. J. Pine and S. J. Putterman. Im- aging of intermittency in ripple-wave turbulence. Science, 1997, 278(5343): 1609-1216.
[33]  J. C. Assilicos. Intermittency in turbulence flows. Cambridge: Cambridge University, 2001.

Full-Text

comments powered by Disqus