全部 标题 作者
关键词 摘要


化学反应速率对爆轰特性的影响研究—基于离散Boltzmann模型
Study on the Influence of Chemical Reaction Rate on Detonation Characteristics—Base on Discrete Boltzmann Model

DOI: 10.12677/CMP.2015.43010, PP. 85-92

Keywords: 离散玻尔兹曼模型,爆轰,反应率模型
Discrete Boltzmann Method
, Detonation, Reaction Rate Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于我们课题组以前提出的高速可压LBGK模型[Gan, Xu, Zhang, Yang, EPL 103 (2013) 24003],发展了一个适用于模拟爆轰问题的离散Boltzmann模型。化学反应率模型采用只保留增长项的Lee模型。基于新构建的模型,模拟了不同反应速率的爆轰情形,找到了一个临界反应速率。当反应速率等于临界反应速率时,模拟的结果与CJ理论值符合较好。当反应速率低于临界反应速率时,爆轰波的波结构中会出现von-Neumann峰,之后从峰值点过渡到稳态,稳态为CJ爆轰状态。当反应速率高于临界反应速率时,爆轰波会以高于CJ爆轰波速的速度向前传播,稳态为弱爆轰状态。
Based on the high-speed compressible model proposed in our group [Gan, Xu, Zhang, Yang, EPL 103 (2013) 24003], a new discrete Boltzmann model for detonation is presented. A new reaction rate function is adopted which comes from Lee’s model but only the growth term is used. Based on the new model, several kinds of detonations with different reaction rates are simulated and a critical reaction rate is found. In the case where the value of reaction rate equals to the critical value, the simulation results coincide well with CJ theory. In the cases where the reaction rates are lower than the critical value, the von-Neumann peak will appear firstly and then steady state is reached behind the detonation wave. The steady states in those cases are in the CJ detonation states. In the cases where reaction rates are higher than the critical rate, the detonation wave propagates at a speed faster than that of CJ detonation and the steady states in those cases are in the weak detonation states.

References

[1]  姜宗林, 滕宏辉, 刘云峰 (2012) 气相爆轰物理的若干研究进展. 力学进展, 2, 129-140.
[2]  孙锦山, 朱建士 (1995) 理论爆轰物理. 国防工业出版社, 北京.
[3]  Nikolaev, Yu.A., Vasil’ev, A.A. and Ul’yanitskii, B.Yu. (2003) Gas detonation and its application in engineering and technologies. Combustion, Explosion, and Shock Waves, 39, 382-410.
http://dx.doi.org/10.1023/A:1024726619703
[4]  Ju, Y.G. (2014) Recent progress and challenges in fundamental combustion research. Advances in Mechanics, 44, 1-72.
[5]  Mader, C.L. (1979). Numerical modeling of detonations. University of California Press, Berkeley.
[6]  Succi, S. (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University, New York.
[7]  郭照立, 郑楚光 (2008) 格子Boltzmann方法的原理及应用. 科学出版社, 北京.
[8]  何雅玲, 王勇, 李庆 (2008) 格子Botlzmann方法的理论及应用. 科学出版社, 北京.
[9]  Xu, A.G., Zhang, G.C., Gan, Y.B., et al. (2012) Lattice Boltzmann modeling and simulation of compressible flows. Frontiers of Physics, 7, 582-560.
http://dx.doi.org/10.1007/s11467-012-0269-5
[10]  许爱国, 张广财, 李英骏, 李华 (2014) 非平衡与多相复杂系统模拟研究. 物理学进展, 3, 136-167.
[11]  许爱国, 张广财, 应阳军 (2015) 燃烧系统的离散Boltzmann建模与模拟研究. 物理学报, 18, 1-26.
[12]  林传栋, 许爱国, 张广财, 李英骏 (2013) 使用极坐标格子玻尔兹曼方法研究冲击过程–复杂系统中非平衡效应的探索. 凝聚态物理学进展, 2, 88-96.
[13]  Xu, A.G., Lin, C.D., Zhang, G.C., et al. (2015) Multiple-relaxation-time lattice Boltzmann kinetic model for combustion. Physical Review E, 91, 1-16.
http://dx.doi.org/10.1103/PhysRevE.91.043306
[14]  Gan, Y.B., Xu, A.G., Zhang, G.C., et al. (2013) Lattice BGK kinetic model for high-speed compressible flows: Hydrodynamic and nonequilibrium behaviors. Europhysics Letter, 103, p1-p6.
http://dx.doi.org/10.1209/0295-5075/103/24003
[15]  Gan, Y.B., Xu, A.G., Zhang, G.C., et al. (2015) Discrete Boltzmann modeling of multiphase flows: Hydrodynamic and thermodynamic non-equilibrium effects. Soft Matter, 11, 5336-5345.
http://dx.doi.org/10.1039/C5SM01125F
[16]  Yan, B., Xu, A.G., Zhang, G.C., et al. (2013) Lattice Boltzmann model for combustion and detonation. Frontiers of Physics, 8, 94-110.
http://dx.doi.org/10.1007/s11467-013-0286-z
[17]  Lin, C.D., Xu, A.G., Zhang, G.C., et al. (2014) Polar coordinate lattice Boltzmann kinetic modeling of detonation phenomena. Communications in Theoretical Physics, 62, 737-748.
http://dx.doi.org/10.1088/0253-6102/62/5/18
[18]  曹威, 何中其, 陈网桦 (2014) TNT后燃反应的水下爆炸实验研究与数值模拟. 高压物理学报, 4, 443-119.
[19]  许越 (2004) 化学反应动力学. 化学工业出版社, 北京.
[20]  Laidler, K.J. (1987) Chemical kinetics. 3rd Edition, Harper & Row, New York.
[21]  水鸿寿 (1989) 一维流体力学差分方法. 国防工业出版社, 北京.

Full-Text

comments powered by Disqus