全部 标题 作者
关键词 摘要


高压条件下简单金属熔体的输运性质及其熵标度关系
Transport Properties and Entropy-Scaling Laws in Simple Liquid Metals under High Pressures

DOI: 10.12677/CMP.2015.44016, PP. 134-143

Keywords: 高温高压,金属熔体,输运性质,熵,标度关系
High Temperature High Pressure
, Liquid Metals, Transport Property, Entropy, Scaling Law

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用经典分子动力学方法研究了在高温高压条件下Fe,Mo,Ta,W,Ni和Cu六种金属熔体的自扩散系数、粘度系数以及对关联熵随温度和压强的变化,验证了Rosenfeld提出的输运系数熵标度关系在高压条件下对金属熔体的适用性。研究结果表明金属熔体的自扩散系数(粘度系数)在给定的压强下满足Arrhenius关系,并且扩散激活能和粘度激活能随压强的增大而增大;Rosenfeld提出的输运系数熵标度关系在高温高压条件下对金属熔体依然使用。为此,在高温高压条件下实验中很难测量得到的金属熔体的输运性质(自扩散系数和粘度)可以通过较容易测量得到的结构性质(对分布函数或结构因子)利用输运系数熵标度关系计算得到。
Molecular dynamic simulations are applied to study the temperature and pressure dependences of self-diffusion coefficient, viscosity and pair correlation entropy of the liquid Fe, Mo, Ta, W, Ni and Cu under high temperature and high pressure conditions. Our results suggest that the tem-perature dependences of self-diffusion coefficients and viscosity are well described by the Arrhenius law at given pressure and that the activation energy increases with increasing pressure. In particular, we find that the entropy-scaling laws proposed by Rosenfeld for self-diffusion coefficients and viscosity still hold well for the liquid metals under high temperature and pressure conditions. Using the entropy-scaling laws, we can obtain transport properties that are difficult to measure from the structural properties (the pair distribution functions or structural factor) which are easier to measure.

References

[1]  Iida, T. and Guthrie, R.I.L. (1988) The Physical Properties of Liquid Metals. Clarendon Press, Oxford.
[2]  Brazhkin, V.V. and Lyapin, A.G.E. (2000) Universal Viscosity Growth in Metallic Melts at Megabar Pressures: The Vitreous State of the Earth’s Inner Core. Physics-Uspekhi, 43, 493.
http://dx.doi.org/10.1070/PU2000v043n05ABEH000682
[3]  Smylie, D.E., Brazhkin, V.V. and Palmer, A. (2009) Direct Observations of the Viscosity of Earth’s Outer Core and Extrapolation of Measurements of the Viscosity of Liquid Iron. Physics-Uspekhi, 52, 79-92.
http://dx.doi.org/10.3367/UFNe.0179.200901d.0091
[4]  Fomin, Y.D., Ryzhov, V.N. and Brazhkin, V.V. (2013) Properties of Liquid Iron along the Melting Line up to Earth- Core Pressures. Journal of Physics: Condensed Matter, 25, Article ID: 285104.
http://dx.doi.org/10.1088/0953-8984/25/28/285104
[5]  Rosenfeld, Y. (1977) Relation between the Transport Coefficients and the Internal Entropy of Simple Systems. Physical Review A, 15, 2545.
http://dx.doi.org/10.1103/PhysRevA.15.2545
[6]  Rosenfeld, Y. (1999) A Quasi-Universal Scaling Law for Atomic Transport in Simple Fluids. Journal of Physics: Condensed Matter, 11, 5415.
http://dx.doi.org/10.1088/0953-8984/11/28/303
[7]  Dzugutov, M. (1996) A Universal Scaling Law for Atomic Diffusion in Condensed Matter. Nature, 381, 137-139.
[8]  Hoyt, J.J., Asta, M. and Sadigh, B. (2000) Test of the Universal Scaling Law for the Diffusion Coefficient in Liquid Metals. Physical Review Letters, 85, 594.
http://dx.doi.org/10.1103/PhysRevLett.85.594
[9]  Li, G.X., Liu, C.S. and Zhu, Z.G. (2005) Scaling Law for Diffusion Coefficients in Simple Melts. Physical Review B, 71, Article ID: 094209.
http://dx.doi.org/10.1103/PhysRevB.71.094209
[10]  Cao, Q.L., Kong, X.S., Li, Y.D., Wu, X. and Liu, C.S. (2011) Revisiting Scaling Laws for the Diffusion Coefficients in Simple Melts Based on the Structural Deviation from Hard-Sphere-Like Case. Physica B: Condensed Matter, 406, 3114-3119.
http://dx.doi.org/10.1016/j.physb.2011.05.023
[11]  Cao, Q.L., Wang, P.P., Huang, D.H., Yang, J.S., Wan, M.J. and Wang, F.H. (2014) Transport Coefficients and Entropy-Scaling Law in Liquid Iron up to Earth-Core Pressures. The Journal of Chemical Physics, 140, Article ID: 114505.
http://dx.doi.org/10.1063/1.4868550
[12]  Cao, Q.-L., Huang, D.-H., Yang, J.-S., Wan, M.-J. and Wang, F.-H. (2014) Transport Properties and the Entropy- Scaling Law for Liquid Tantalum and Molybdenum under High Pressure. Chinese Physics Letters, 31, Article ID: 066202.
http://dx.doi.org/10.1088/0256-307X/31/6/066202
[13]  Cao, Q.L., Shao, J.X., Wang, P.P. and Wang, F.H. (2015) Entropy-Scaling Laws for Diffusion Coefficients in Liquid Metals under High Pressures. Journal of Applied Physics, 117, Article ID: 135903.
http://dx.doi.org/10.1063/1.4916986
[14]  Cao, Q.-L., Wang, P.-P., Huang, D.-H., Yang, J.-S., Wan, M.-J. and Wang, F.-H. (2015) Properties of Liquid Nickel along Melting Lines under High Pressure. Chinese Physics Letters, 32, Article ID: 086201.
http://dx.doi.org/10.1088/0256-307X/32/8/086201
[15]  Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F. and Kress, J.D. (2001) Structural Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, and Embedded-Atom Calculations. Physical Review B, 63, Article ID: 224106.
http://dx.doi.org/10.1103/PhysRevB.63.224106
[16]  Dai, X.D., Kong, Y., Li, J.H. and Liu, B.X. (2006) Extended Finnis-Sinclair Potential for bcc and fcc Metals and Alloys. Journal of Physics: Condensed Matter, 18, 4527-4542.
http://dx.doi.org/10.1088/0953-8984/18/19/008
[17]  Belonoshko, A.B., Ahuja, R. and Johansson, B. (2000) Quasi—Ab Initio Molecular Dynamic Study of Fe Melting. Physical Review Letters, 84, 3638-3641.
http://dx.doi.org/10.1103/PhysRevLett.84.3638
[18]  Pozzo, M. and Alfè, D. (2013) Melting Curve of Face-Centered-Cubic Nickel from First-Principles Calculations. Physical Review B, 88, Article ID: 024111.
http://dx.doi.org/10.1103/PhysRevB.88.024111
[19]  Ko?i, L., Belonoshko, A.B. and Ahuja, R. (2007) Molecular Dynamics Calculation of Liquid Iron Properties and Adiabatic Temperature Gradient in the Earth’s Outer Core. Geophysical Journal International, 168, 890-894.
http://dx.doi.org/10.1111/j.1365-246X.2006.03256.x
[20]  Alfè, D., Kresse, G. and Gillan, M.J. (2000) Structure and Dynamics of Liquid Iron under Earth’s Core Conditions. Physical Review B, 61, 132-142.
http://dx.doi.org/10.1103/PhysRevB.61.132
[21]  Desgranges, C. and Delhommelle, J. (2007) Viscosity of Liquid Iron under High Pressure and High Temperature: Equilibrium and Nonequilibrium Molecular Dynamics Simulation Studies. Physical Review B, 76, Article ID: 172102.
http://dx.doi.org/10.1103/PhysRevB.76.172102
[22]  Paradis, P.F., Ishikawa, T. and Koike, N. (2007) Non-Contact Measurements of the Surface Tension and Viscosity of Molybdenum Using an Electrostatic Levitation Furnace. International Journal of Refractory Metals and Hard Materials, 25, 95-100.
http://dx.doi.org/10.1016/j.ijrmhm.2006.02.001
[23]  Ishikawa, T., Paradis, P.F., Okada, J.T., Kumar, M.V. and Watanabe, Y. (2013) Viscosity of Molten Mo, Ta, Os, Re, and W Measured by Electrostatic Levitation. The Journal of Chemical Thermodynamics, 65, 1-6.
http://dx.doi.org/10.1016/j.jct.2013.05.036
[24]  Paradis, P.F., Ishikawa, T. and Yoda, S. (2005) Surface Tension and Viscosity of Liquid and Undercooled Tantalum Measured by a Containerless Method. Journal of Applied Physics, 97, Article ID: 053506.
http://dx.doi.org/10.1063/1.1854211
[25]  Chathoth, S.M., Meyer, A., Koza, M.M. and Juranyi, F. (2004) Atomic Diffusion in Liquid Ni, NiP, PdNiP, and PdNiCuP Alloys. Applied Physics Letters, 85, 4881-4883.
http://dx.doi.org/10.1063/1.1825617
[26]  Jakse, N., Wax, J.F. and Pasturel, A. (2007) Transport Properties of Liquid Nickel near the Melting Point: An ab Initio Molecular Dynamics Study. The Journal of Chemical Physics, 126, Article ID: 234508.
http://dx.doi.org/10.1063/1.2741521
[27]  Meyer, A. (2010) Self-Diffusion in Liquid Copper as Seen by Quasielastic Neutron Scattering. Physical Review B, 81, Article ID: 012102.
http://dx.doi.org/10.1103/PhysRevB.81.012102
[28]  Assael, M.J., Kalyva, A.E., Antoniadis, K.D., Banish, R.M., Egry, I., Wu, J., Kaschnitz, E. and Wakeham, W.A. (2010) Reference Data for the Density and Viscosity of Liquid Copper and Liquid Tin. Journal of Physical and Chemical Reference Data, 39, Article ID: 033105.
http://dx.doi.org/10.1063/1.3467496

Full-Text

comments powered by Disqus