全部 标题 作者
关键词 摘要


铁磁条和肖特基金属条调制下的电子自旋极化输运
Spin Polarizaion in Magnetic Nanostructure Modulated by Ferromagnetic and Schottky Metal Stripes

DOI: 10.12677/CMP.2016.52004, PP. 23-28

Keywords: 磁纳米结构,电子输运,自旋极化,肖特基金属条
Magnetic Nanostructure
, Electron Transport, Spin Polarization, Schottky Metal Stripe

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用转移矩阵方法,理论上研究了电子在铁磁条和肖特基金属条共同调制下的磁纳米结构中的输运性质。结果发现电子的输运特性不仅与铁磁条的长度,肖特基金属条的位置,还与肖特基金属条上所加的偏压有较大的关系。增加铁磁条的长度和肖特基金属条与铁磁条的距离会减小电子自旋极化度曲线的震荡周期和加大部分能量区域的自旋极化度。通过调节这些参数达到较为合适的值,可以获得较大的自旋极化效应,这些特性可以有助于制造新型电子自旋过滤器。
With the transfer matrix method, the transport properties of the electron through the 2DEQ modulated by ferromagnetic and Schottky metal stripes have been investigated. The result shows that the transport properties not only depend on the length of the ferromagnetic metal stripes and the position of Schotty mental strips, but also the bias voltage of Schottky metal stripes. The increase of the length of ferromagnetic mental strips and the distance between ferromagnetic mental strips and Schottky metal stripe will decrease the oscillation period of the spin polarized curve and increase the spin polarization in some energy plateau. And big spin-polarized effect can be attained through adjusting these parameters. These properties may contribute to making new tunable spin filter.

References

[1]  秦建华, 郭永, 陈信义, 等. 磁电垒结构中自旋极化输运性质的研究[J]. 物理学报, 2003, 52(10): 2569-2575.
[2]  ?uti?, I., Fabian, J. and Sarma, S.D. (2004) Spintronics: Fundamentals and Applications. Reviews of Modern Physics, 76, 323. http://dx.doi.org/10.1103/RevModPhys.76.323
[3]  Majumdar, A. (1996) Effects of Intrinsic Spin on Electronic Transport through Magnetic Barriers. Physical Review B, 54, 11911-11913. http://dx.doi.org/10.1103/PhysRevB.54.11911
[4]  Papp, G. and Peeters, F.M. (2001) Spin Filtering in a Magnet-ic-Electric Barrier Structure. Applied Physics Letters, 78, 2184-2186. http://dx.doi.org/10.1063/1.1360224
[5]  Xu, H.Z. and Okada, Y. (2001) Does a Magnetic Barrier or a Magnetic-Electric Barrier Structure Possess Any Spin Polarization and Spin Filtering under Zero Bias? Applied Physics Letters, 79, 3119-3121. http://dx.doi.org/10.1063/1.1416167
[6]  Ye, P.D., Weiss, D., Gerhardts, R.R., et al. (1995) Electrons in a Periodic Magnetic Field Induced by a Regular Array of Micromagnets. Physical Review Letters, 74, 3013-3016. http://dx.doi.org/10.1103/PhysRevLett.74.3013
[7]  Bae, J.U., Lin, T.Y., Yoon, Y., et al. (2008) Large Tunneling Magnetoresistance in a Field-Effect Transistor with a Nanoscale Ferromagnetic Gate. Applied Physics Letters, 92, 253101. http://dx.doi.org/10.1063/1.2951901
[8]  Monzon, F.G., Johnson, M. and Roukes, M.L. (1997) Strong Hall Voltage Modulation in Hybrid Ferromagnet/Semi- conductor Microstructures. Applied Physics Letters, 71, 3087-3089. http://dx.doi.org/10.1063/1.120254
[9]  Lu, J.D. and Liu, H.Y. (2011) Spin Polarization in a Two Dimensional Electron Gas Modulated by Ferromagnetic and Schottky Metal Stripes. Microelectronics Reliability, 51, 1123-1126. http://dx.doi.org/10.1016/j.microrel.2011.02.008
[10]  Lu, J.D. (2010) Influence of the Periodic δ-Doping on the Electron Transport in a Magnetically Modulated Two-Di- mensional Electron Gas. Physica E Low-Dimensional Systems and Nanostructures, 8, 2151-2155. http://dx.doi.org/10.1016/j.physe.2010.04.015
[11]  Lu, J.D., Liu, H.Y., Li, Y.B., et al. (2011) Electron Transport in a Nanostructure Periodically Modulated by Ferromagnetic and Schottky Metal Stripes. Modern Physics Letters B, 25, 1529-1536. http://dx.doi.org/10.1142/S0217984911026917
[12]  Zhai, F., Xu, H.Q. and Guo, Y. (2004) Tunable Spin Polarization in a Two-Dimensional Electron Gas Modulated by a Ferromagnetic Metal Stripe and a Schottky Metal Stripe. Physical Review B Condensed Matter, 70, 5308. http://dx.doi.org/10.1103/PhysRevB.70.085308
[13]  Papp, G., Vasilopoulos, P. and Peeters, F.M. (2005) Spin Polarization in a Two-Dimensional Electron Gas Modulated Periodically by Ferromagnetic and Schottky Metal Stripes. Physical Review B, 72, 115315. http://dx.doi.org/10.1103/PhysRevB.72.115315
[14]  Lu, M.W. and Zhou, S.M. (2010) A Bias-Tunable Electron-Spin Filter Based on a Hybrid Ferromagnetic-Schottky- Metal and Semiconductor Nanostructure. Physics Letters A, 374, 4349-4353. http://dx.doi.org/10.1016/j.physleta.2010.08.056
[15]  Xu, H.Q. and Yan, Q.Q. (2008) Electric Tunable of Electron Spin Polarization in Hybrid Magnetic-Electric Barrier Structures. Physics Letters A, 372, 6216-6220. http://dx.doi.org/10.1016/j.physleta.2008.08.042
[16]  Lu, M.W. and Yang, G.J. (2007) Magnetoresistance Effect in a Both Magnetically and Electrically Modulated Nanostructure. Physics Letters A, 362, 489-493. http://dx.doi.org/10.1016/j.physleta.2006.10.058
[17]  Papp, G. and Peeters, F.M. (2001) Spin Filtering in a Magnetic-Electric Barrier Structure. Applied Physics Letters, 78, 2184-2186. http://dx.doi.org/10.1063/1.1360224

Full-Text

comments powered by Disqus