全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Cell-Cycle-Associated Amplified Genomic-DNA Fragments (CAGFs) Might Be Involved in Chloroquine Action and Resistance in Plasmodium falciparum

DOI: 10.4236/oalib.1103451, PP. 1-11

Subject Areas: Genetics, Molecular Biology, Cell Biology

Keywords: Plasmodium falciparum, Chloroquine Resistance, Cell-Cycle-Associated Amplified Genomic-DNA Fragment (CAGF), Plasmodium falciparum Cystine Transporter (Pfct), Glutathione (GSH), Reactive Oxygen Species (ROS), Pfcrmp

Full-Text   Cite this paper   Add to My Lib

Abstract

As a cheap and safe antimalarial agent, chloroquine (CQ) has been used in the battle against malaria for more than half century. However, the mechanism of CQ action and resistance in Plasmodium falciparum remains elusive. Based on further analysis of our published experimental results, we propose that the mechanism of CQ action and resistance might be closely linked with cell-cycle-associated amplified genomic-DNA fragments (CAGFs, singular form = CAGF) as CQ induces CAGF production in P. falciparum, which could affect multiple biological processes of the parasite, and thus might contribute to parasite death and CQ resistance. Recently, we found that CQ induced one of CAGFs, UB1-CAGF, might downregulate a probable P. falciparum cystine transporter (Pfct) gene expression, which could be used to understand the mechanism of CQ action and resistance in P. falciparum.

Cite this paper

Li, G. (2017). Cell-Cycle-Associated Amplified Genomic-DNA Fragments (CAGFs) Might Be Involved in Chloroquine Action and Resistance in Plasmodium falciparum. Open Access Library Journal, 4, e3451. doi: http://dx.doi.org/10.4236/oalib.1103451.

References

[1]  Packard, R.M. (2014) The Origins of Antimalarial-Drug Resistance. New England Journal of Medicine, 371, 397-399. https://doi.org/10.1056/NEJMp1403340
[2]  Zhang, Y., Liao, Z., Zhang, L.J. and Xiao, H.T. (2015) The Utility of Chloroquine in Cancer Therapy. Current Medical Research and Opinion, 31, 1009-1013. https://doi.org/10.1185/03007995.2015.1025731
[3]  Antony, H.A. and Parija, S.C. (2016) Antimalarial Drug Resistance: An Overview. Tropical Parasitology, 6, 30-41. https://doi.org/10.4103/2229-5070.175081
[4]  Meshnick, S.R. (1990) Chloroquine as In-tercalator: A Hypothesis Revived. Parasitology Today, 6, 77-79. https://doi.org/10.1016/0169-4758(90)90215-P
[5]  Picot, S., Burnod, J., Bracchi, V., Chumpitazi, B.F. and Ambroise-Thomas, P. (1997) Apoptosis Related to Chloroquine Sen-sitivity of the Human Malaria Parasite Plasmodium falciparum. Transactions of the Royal Society of Tropical Medicine and Hygiene, 91, 590-591. https://doi.org/10.1016/S0035-9203(97)90039-0
[6]  Trotta, R.F., Brown, M.L., Terrell, J.C. and Geyer, J.A. (2004) Defective DNA Repair as a Potential Mechanism for the Rapid Development of Drug Resistance in Plasmodium falciparum. Biochemistry, 43, 4885-4891. https://doi.org/10.1021/bi0499258
[7]  Gupta, D.K., Patra, A.T., Zhu, L., Gupta, A.P. and Bozdech, Z. (2016) DNA Damage Regulation and Its Role in Drug-Related Phenotypes in the Malaria Parasites. Scientific Reports, 6, 23603. https://doi.org/10.1038/srep23603
[8]  Li, G.D. (2006) Nucleus May Be the Key Site of Chloroquine Antimalarial Action and Resistance Development. Medical Hypotheses, 67, 323-326. https://doi.org/10.1016/j.mehy.2006.02.008
[9]  Li, G.D. (2007) Plasmodium falciparum Chloroquine Resistance Marker Protein (Pfcrmp) May Be a Chloroquine Target Protein in Nucleus. Medical Hypotheses, 68, 332-334. https://doi.org/10.1016/j.mehy.2006.07.016
[10]  Li, G.D. (2008) Pfcrmp May Play a Key Role in Chloroquine Antimalarial Action and Resistance Development. Medical Hypotheses and Research, 4, 69-73.
[11]  Li, G.D. (2016) Certain Amplified Genomic-DNA Fragments (AGFs) May Be Involved in Cell Cycle Progression and Chloroquine Is Found to Induce the Production of Cell-Cycle-Associated AGFs (CAGFs) in Plasmodium falciparum. Open Access Library Journal, 3, e2447. http://dx.doi.org/10.4236/oalib.1102447
[12]  Li, G.D. (2016) DNA to DNA Transcription Might Exist in Eukaryotic Cells. Open Access Library Journal, 3, e2665. https://doi.org/10.4236/oalib.1102665
[13]  Li, G.D. (2016) A Possible Mechanism of DNA to DNA Transcription in Eukaryotic Cells: Endonuclease Dependent Transcript Cutout. Open Access Library Journal, 3, e2758. https://doi.org/10.4236/oalib.1102758
[14]  Li, G.D. (2016) Genoautotomy (Genome “Self-Injury”) in Eukaryotic Cells: A Cellular Defence Response to Genotoxic Stress. Open Access Library Journal, 3, e2946. https://doi.org/10.4236/oalib.1102946
[15]  Rakoczy, P.E. (2001) Antisense DNA Tech-nology. Methods in Molecular Medicine, 47, 89-104.
[16]  Billen, D. (1990) Spontaneous DNA Damage and Its Significance for the “Negligible Dose” Controversy in Radiation Protection. Radiation Research, 124, 242-245. https://doi.org/10.2307/3577872
[17]  Li, G.D. (2016) “Natural Site-Directed Mutagenesis” Might Exist in Eukaryotic Cells. Open Access Library Journal, 3, e2595. https://doi.org/10.4236/oalib.1102595
[18]  Gravina, S., Sedivy, J.M. and Vijg, J. (2016) The Dark Side of Circulating Nucleic Acids. Aging Cell, 15, 398-399. https://doi.org/10.1111/acel.12454
[19]  Yamamoto, K., Nonaka, G., Ozawa, T., Takumi, K. and Ishihama, A. (2015) Induction of the Escherichia coli yijE Gene Expression by Cystine. Bioscience, Biotechnology, and Biochemistry, 79, 218-222. https://doi.org/10.1080/09168451.2014.972328
[20]  Rimaniol, A.C., Mialocq, P., Clayette, P., Dormont, D. and Gras, G. (2001) Role of Glutamate Transporters in the Regulation of Glutathione Levels in Human Macrophages. American Journal of Physiology—Cell Physi-ology, 281, C1964-C1970.
[21]  Bridges, R.J., Natale, N.R. and Patel, S.A. (2012) System xc- Cystine/Glutamate Antiporter: An Update on Molecular Pharmacology and Roles within the CNS. British Journal of Pharmacology, 165, 20-34. https://doi.org/10.1111/j.1476-5381.2011.01480.x
[22]  Liu, R., Blower, P.E., Pham, A.N., et al. (2007) Cystine-Glutamate Transporter SLC7A11 Mediates Resistance to Geldanamycin but Not to 17-(Allylamino)-17-Demethoxygeldanamycin. Mol Pharmacol, 72, 1637-1646. https://doi.org/10.1124/mol.107.039644
[23]  Huang, Y., Dai, Z., Barbacioru, C. and Sadée, W. (2005) Cystine-Glutamate Transporter SLC7A11 in Cancer Chemosensitivity and Chemoresistance. Cancer Research, 65, 7446-7454. https://doi.org/10.1158/0008-5472.CAN-04-4267
[24]  Meierjohann, S., Walter, R.D. and Müller, S. (2002) Regulation of Intracellular Glutathione Levels in Erythrocytes Infected with Chloroquine-Sensitive and Chloroquine-Resistant Plasmodium falciparum. Biochemical Journal, 368, 761-768. https://doi.org/10.1042/bj20020962
[25]  Gamcsik, M.P, Dubay, G.R. and Cox, B.R. (2002) Increased Rate of Glutathione Synthesis from Cystine in Drug-Resistant MCF-7 Cells. Biochemical Pharmacology, 63, 843-851. https://doi.org/10.1016/S0006-2952(01)00931-5
[26]  Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S. and Kalayci, O. (2012) Oxidative Stress and Antioxidant Defense. The World Allergy Organization Journal, 5, 9-19. https://doi.org/10.1097/WOX.0b013e3182439613
[27]  Higuchi, Y. (2004) Glutathione Depletion-Induced Chromosomal DNA Fragmentation Associated with Apoptosis and Necrosis. Journal of Cellular and Molecular Medicine, 8, 455-464. https://doi.org/10.1111/j.1582-4934.2004.tb00470.x
[28]  Markovic, J., Mora, N. J., Broseta, A.M., et al. (2009) The Depletion of Nuclear Glutathione Impairs Cell Proliferation in 3t3 Fibroblasts. PLoS ONE, 4, e6413. https://doi.org/10.1371/journal.pone.0006413
[29]  Grüring, C., Heiber, A., Kruse, F., Ungefehr, J., Gilberger, T.W. and Spielmann, T. (2011) Development and Host Cell Modifications of Plasmodium falciparum Blood Stages in Four Dimensions. Nature Communications, 2, 165. https://doi.org/10.1038/ncomms1169
[30]  Yayon, A., Vande Waa, J.A., Yayon, M., Geary, T.G. and Jensen, J.B. (1983) Stage-Dependent Effects of Chloroquine on Plasmodium falciparum in Vitro. Journal of Protozoology, 30, 642-647. https://doi.org/10.1111/j.1550-7408.1983.tb05336.x
[31]  Liemburg-Apers, D.C., Willems, P.H.G.M., Koopman, W.J.H. and Grefte, S. (2015) Interactions between Mitochondrial Reactive Oxygen Species and Cellular Glucose Metabolism. Archives of Toxicology, 89, 1209-1226. https://doi.org/10.1007/s00204-015-1520-y
[32]  Bonnefont-Rousselot, D. (2002) Glucose and Reactive Oxygen Species. Current Opinion in Clinical Nutrition & Metabolic Care, 5, 561-568. https://doi.org/10.1097/00075197-200209000-00016
[33]  Lwin, K.M., Ashley, E.A., Proux, S., Silamut, K., Nosten, F. and McGready, R. (2008) Clinically Uncomplicated Plasmodium falciparum Malaria with High Schizontaemia: A Case Report. Malaria Journal, 7, 57. https://doi.org/10.1186/1475-2875-7-57
[34]  Rossetto, D., Avvakumov, N. and C?té, J. (2012). Histone Phosphorylation: A Chromatin Modification Involved in Diverse Nuclear Events. Epigenetics, 7, 1098-1108. https://doi.org/10.4161/epi.21975
[35]  Misaki, T., Yamaguchi, L., Sun, J., Orii, M., Nishiyama, A and Nakanishi, M. (2016) The Replication Foci Targeting Sequence (RFTS) of DNMT1 Functions as a Potent Histone H3 Binding Domain Regulated by Autoinhibition. Biochemical and Biophysical Research Communications, 470, 741-747. https://doi.org/10.1016/j.bbrc.2016.01.029
[36]  Tikoo, K., Lau, S.S. and Monks, T.J. (2001) Histone H3 Phosphorylation Is Coupled to Poly-(ADP-Ribosylation) during Reactive Oxygen Species-Induced Cell Death in Renal Proximal Tubular Epithelial Cells. Molecular Pharmacology, 60, 394-402.
[37]  Park, C.H. and Kim, K.T. (2012) Apoptotic Phosphorylation of Histone H3 on Ser-10 by Protein Kinase Cδ. PLoS ONE, 7, e44307. https://doi.org/10.1371/journal.pone.0044307
[38]  Lehane, A.M., McDevitt, C.A., Kirk, K. and Fidock, D.A. (2012) Degrees of Chloroquine Resistance in Plasmodium—Is the Redox System Involved? International Journal for Parasitology—Drugs and Drug Resistance, 2, 47-57. https://doi.org/10.1016/j.ijpddr.2011.11.001
[39]  Cohen, S. and Segal D. (2009) Extrachromosomal Circular DNA in Eukaryotes: Possible Involvement in the Plasticity of Tandem Repeats. Cytogenetic and Genome Research, 124, 327-338. https://doi.org/10.1159/000218136
[40]  Moller, H.D., Parsons, L., Jorgensen, T.S., Botstein, D. and Regenberg, B. (2015) Extrachromosomal Circular DNA Is Common in Yeast. Proceedings of the National Academy of Sciences, 112, E3114-E3122. https://doi.org/10.1073/pnas.1508825112
[41]  Alsford, N.S., Navarro, M., Jamnadass, H.R., Dunbar, H., Ackroyd, M., Murphy, N.B., Gull, K. and Ersfeld, K. (2003) The Identi-fication of Circular Extrachromosomal DNA in the Nuclear Genome of Trypanosoma brucei. Molecular Microbiology, 47, 277-289. https://doi.org/10.1046/j.1365-2958.2003.03266.x
[42]  Cohen, S., Yacobi, K. and Segal, D. (2003) Extrachromosomal Circular DNA of Tandemly Repeated Genomic Sequences in Drosophila. Genome Research, 13, 1133-1145. https://doi.org/10.1101/gr.907603
[43]  Cohen, Z. and Lavi, S. (2009) Replication Independent Formation of Extrachromosomal Circular DNA in Mammalian Cell-Free System. PLoS ONE, 4, e6126. https://doi.org/10.1371/journal.pone.0006126

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413