全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Instability of Dielectric Liquid Surface under the Action of HV Corona Discharge Pulses

DOI: 10.4236/oalib.1104269, PP. 1-12

Subject Areas: Fluid Mechanics, Plasma

Keywords: Dielectric Liquids, Crater Instability, Rose-Window, Oculus

Full-Text   Cite this paper   Add to My Lib

Abstract

Instability of liquid dielectrics surface, being developing after the action of an alternating current corona discharge pulse, has been experimentally investigated. Voltage amplitude on the corona electrode reaches 70 kV, frequency is 17 MHz, and pulse duration is 0.5-1 μs. This is similar to rose-window instability at electrode height above the liquid surface > 5-10 mm. At lesser heights, development of a singular crater is observed with turbulization of its walls surrounded by radially divergent wrinkles on the surface. In this case, instability shape is similar to an oculus. Maximum effect is demonstrated by oils with high specific electric resistance.

Cite this paper

Korolev, A. (2018). Instability of Dielectric Liquid Surface under the Action of HV Corona Discharge Pulses. Open Access Library Journal, 5, e4269. doi: http://dx.doi.org/10.4236/oalib.1104269.

References

[1]  Sticher, J. and Thomas, D. (1939) Effect of Corona Discharge on Liquid Dielectrics. Transactions of the American Institute of Electrical Engineers, 58, 12.
https://doi.org/10.1109/T-AIEE.1939.5057888
[2]  Aleksandrov, A., Bichkov, V., et al. (2011) Elektrogydrodynamicheskie osobennosti vzaimodeistvia koronnogo razrjada s poverhnost’u jidkosti. MSU Vestnik. Series 3, 4, 67.
[3]  Takeuchi, N. and Takubo, K. (2015) Mass Transfer Enhancement of Reactive Species by Gas-and Liquid-Phase Flow Induced by Corona Discharge Generated above Water. International Journal of Plasma Environmental Science & Technology, 9, 1.
[4]  Mahmoudi, S., et al. (2011) Spreading of a Dielectric Droplet through an Interfacial Electric Pressure. Proceedings of the Royal Society, 467, 3257-3271.
https://doi.org/10.1098/rspa.2011.0220
[5]  Mahmoudi, S., et al. (2013) On the Corona Discharge Spreading of Dielectric Liquid Films. Journal of Electrostatics, 71, 496-498.
https://doi.org/10.1016/j.elstat.2012.12.038
[6]  Chang, J., Urashima, K., et al. (1997) Electrohydrodynamic Pressure Drop in a Silent and Superimposed Barrier Discharge. IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Minneapolis, 19-22 October 1997, 668-671.
[7]  Fedirchyk, I., Nedybaliuk, O., et al. (2015) Influence of Plasma on Surface Tension of Hydrocarbons. Problems of Atomic Science and Technology. No. 1. Series: Plasma Physics, No. 21, 239-242.
[8]  Vega, F. and Pérez, A. (2003) Corona-Induced Electrohydrodynamic Instabilities in Low Conducting Liquids. Experiments in Fluids, 34, 726-735.
https://doi.org/10.1007/s00348-003-0616-y
[9]  Vega, F. and Garcia, F. (2006) Pattern Imaging of Primary and Secondary Electrohydrodynamic Instabilities. Journal of Fluid Mechanics, 549, 61-69.
https://doi.org/10.1017/S0022112005007706
[10]  Chicón, R. and Pérez, A. (2006) Instability of an Interface between Air and a Low Conducting Liquid Subjected to Charge Injection. Physics of Fluids, 18, 104-108.
https://doi.org/10.1063/1.2363219
[11]  Vega, F. and Garcia, F. (2008) Geometric Properties of the Patterns Observed in Low Conducting Liquids under Corona Discharge. Journal of Electrostatics, 66, 178-183.
https://doi.org/10.1016/j.elstat.2007.12.001
[12]  Xie, G., Yang, Y., et al. (2013) AC Pulse Dielectric Barrier Corona Discharge over Oil Surfaces: Effect of Oil Temperature. IEEE Transactions on Plasma Science, 41, 481-484.
https://doi.org/10.1109/TPS.2012.2230341
[13]  Saranin, V., et al. (2014) Neustoichivost’ ravnovesia poverhnosti zhidkogo dielectrika I obrazovanie reguljarnyh jacheistyh structur v pole koronnogo razrjada. JETF, 2, 398-404.
[14]  Guo, Z., et al. (2016) Rose-Window Instability of Oil Surfaces Exposed In Corona Discharge.
http://www.yau-awards.science/wp-content/uploads/2016/11/
Rose-Window-Instability-of-Oil-Surfaces-Exposed-In-Corona-Discharge-
论文正文-20160820.pdf
https://doi.org/10.1351/pac198557091353
[15]  Goldman, M., et al. (1985) The Corona Discharge, Its Properties and Specific Uses. Pure and Applied Chemistry, 57, 1353-1362.
[16]  Rybka, D., Andronikov, I., et al. (2013) Corona Discharge in Atmospheric Pressure Air under a Modulated Voltage Pulse of 10 ms. Atmospheric and Oceanic Optics, 26, 449-453.
https://doi.org/10.1134/S1024856013050138
[17]  Brutin, D. (2003) Drop Impingement on a Deep Liquid Surface: Study of a Crater’s Sinking Dynamics. C. R. Mecanique, 331, 61-67.
https://doi.org/10.1016/S1631-0721(02)00014-1
[18]  Brown, C., et al. (2010) Amplitude Scaling of a Static Wrinkle at an Oil-Air Interface Created by Dielectrophoresis Forces. Applied Physics Letters, 97, Article ID: 242904.
[19]  McHale, G., Brown, C., et al. (2012) Developing Interface Localized Liquid Dielectrophoresis for Optical Applications. Proc. SPIE, 8557, Article ID: 855703.
https://doi.org/10.1117/12.2001442
[20]  Wu, X., et al. (2007) Wrinkling of a Charged Elastic Film on a Viscous Layer. Mec-canica, 42, 273-282.
https://doi.org/10.1007/s11012-007-9054-x
[21]  Bachelor, D. (1973) Vvedenie v dinamiky jidkosti. Mir, Moscow, 580.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413